Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid.
نویسندگان
چکیده
The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at λ ≥ 305 nm can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5-300 mM) continuously sparged with air is re-examined in the laboratory under comparable irradiance at 38° N at noon on a summer day. Several analytical methods are employed to monitor the time series of the reaction, including (1) the derivatization of carbonyl (C═O) functional groups with 2,4-dinitrophenylhydrazine (DNPH), (2) the separation of photoproducts by ultrahigh pressure liquid chromatography (UHPLC) and ion chromatography (IC) coupled to mass spectrometry (MS), (3) high resolution MS, (4) the assignment of 1H NMR and 13C gCOSY spectroscopic features, and (5) quantitative 1H NMR. The primary photoproducts are 2,3-dimethyltartaric acid and unstable 2-(1-carboxy-1-hydroxyethoxy)-2-methyl-3-oxobutanoic acid, a polyfunctional β-ketocarboxylic acid with eight carbons (C8) that quickly decarboxylates into 2-hydroxy-2-((3-oxobutan-2-yl)oxy)propanoic acid. Kinetic isotope effect studies performed for the first time for this system reveal the existence of tunneling during the initial loss of PA. Thus, the KIEs support a mechanism initiated by photoinduced proton coupled electron transfer (PCET). Measured reaction rates at variable initial [PA]0 were used to calculate the sum of the quantum yields for the products, which displays a hyperbolic dependence: ∑Φproduct = 1.99 [PA]0/(113.2 + [PA]0). The fast photochemical loss of aqueous PA with an estimated lifetime of 21.7 min is interpreted as a significant atmospheric sink for this species. The complexity of these aqueous phase pathways indicates that the solar photochemistry of an abundant α-ketocarboxylic acid can activate chemical processes for SOA formation.
منابع مشابه
Photoinduced oligomerization of aqueous pyruvic acid.
The 320 nm-band photodecarboxylation of aqueous pyruvic acid (PA), a representative of the alpha-oxocarboxylic acids widely found in the atmospheric aerosol, yields 2,3-dimethyltartaric (A) and 2-(3-oxobutan-2-yloxy)-2-hydroxypropanoic (B) acids, rather than 3-hydroxy-2-oxobutanone as previously reported. A and B are identified by liquid chromatography with UV and ESI-MS detection, complemented...
متن کاملPhotochemistry of aqueous pyruvic acid.
The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is current...
متن کاملDirect photolysis of carbonyl compounds dissolved in cloud and fog droplets
Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmo...
متن کاملPhotolysis of pyruvic acid in ice: Possible relevance to CO and CO2 ice core record anomalies
[1] The abnormal spikes detected in some CO and CO2 polar ice core records indicate persistent chemical activity in glacial ice. Since CO and CO2 spikes are correlated, and their amplitudes scale with reported CO/CO2 yields for the photolysis of dissolved natural organic matter, a common photochemical source is implicated. Given that sufficient actinic radiation is constantly generated througho...
متن کاملExperimental and theoretical study of aqueous cis-pinonic acid photolysis.
Direct aqueous photolysis of cis-pinonic acid (PA; 2-(3-acetyl-2,2-dimethylcyclobutyl)acetic acid; CAS Registry No. 473-72-3) by 280-400 nm radiation was investigated. The photolysis resulted in Norrish type II isomerization of PA leading to 3-isopropenyl-6-oxoheptanoic acid (CAS Registry No. 4436-82-2), also known as limononic acid, as the major product, confirmed by (1)H and (13)C NMR analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 121 15 شماره
صفحات -
تاریخ انتشار 2017